Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Answering biological questions by querying k‐mer databases

Identifieur interne : 002161 ( Main/Exploration ); précédent : 002160; suivant : 002162

Answering biological questions by querying k‐mer databases

Auteurs : Paul Greenfield [Australie] ; Uwe Roehm [Australie]

Source :

RBID : ISTEX:AC68D9200A5C2B61CAD6B4DA194F23411EC22066

English descriptors

Abstract

This paper describes a k‐mer approach to analysing DNA data and quickly answering certain types of ad hoc biological questions. These k‐mers (short DNA strings) are stored in a conventional relational database and indexed to support efficient exact match operations. We show that k‐mers around 20–25 bases long have interesting and useful uniqueness properties that can be used to compute a ‘relatedness’ metric and also allow k‐mers to be used as ‘unique enough’ tags to identify organisms and genes. This relatedness metric is used in SQL queries that can directly answer questions such as how two related species differ, and what genes are unique to an organism. The k‐mer tags have proven useful in applications, largely metagenomic ones that can quickly process large volumes of sequencing data to say something about what organisms and genes might be present in an environmental sample. All of this work is based on simple and fast exact matches of k‐mer strings using a database, rather than conventional alignment based on inexact matches of much longer strings. These k‐mer tools provide ways of rapidly exploring large genome spaces and handling large volumes of sequence data, and complement rather than replace existing alignment and assembly tools. Copyright © 2012 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/cpe.2938


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Answering biological questions by querying k‐mer databases</title>
<author>
<name sortKey="Greenfield, Paul" sort="Greenfield, Paul" uniqKey="Greenfield P" first="Paul" last="Greenfield">Paul Greenfield</name>
</author>
<author>
<name sortKey="Roehm, Uwe" sort="Roehm, Uwe" uniqKey="Roehm U" first="Uwe" last="Roehm">Uwe Roehm</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:AC68D9200A5C2B61CAD6B4DA194F23411EC22066</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/cpe.2938</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-0HFBCVBC-2/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000029</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000029</idno>
<idno type="wicri:Area/Istex/Curation">000029</idno>
<idno type="wicri:Area/Istex/Checkpoint">000299</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000299</idno>
<idno type="wicri:doubleKey">1532-0626:2013:Greenfield P:answering:biological:questions</idno>
<idno type="wicri:Area/Main/Merge">002185</idno>
<idno type="wicri:Area/Main/Curation">002161</idno>
<idno type="wicri:Area/Main/Exploration">002161</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Answering biological questions by querying k‐mer databases</title>
<author>
<name sortKey="Greenfield, Paul" sort="Greenfield, Paul" uniqKey="Greenfield P" first="Paul" last="Greenfield">Paul Greenfield</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Mathematics, Informatics and Statistics Sydney, CSIRO, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Roehm, Uwe" sort="Roehm, Uwe" uniqKey="Roehm U" first="Uwe" last="Roehm">Uwe Roehm</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of IT, University of Sydney, NSW, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Concurrency and Computation: Practice and Experience</title>
<title level="j" type="sub">Combined Special Issues on eScience 2010 and Euro‐Par 2011</title>
<title level="j" type="alt">CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE</title>
<idno type="ISSN">1532-0626</idno>
<idno type="eISSN">1532-0634</idno>
<imprint>
<biblScope unit="vol">25</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="497">497</biblScope>
<biblScope unit="page" to="509">509</biblScope>
<biblScope unit="page-count">13</biblScope>
<date type="published" when="2013-02">2013-02</date>
</imprint>
<idno type="ISSN">1532-0626</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1532-0626</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Alignment search tool</term>
<term>Amino acid</term>
<term>Assembly tools</term>
<term>Astronomical databases</term>
<term>Available organism</term>
<term>Bacterial community</term>
<term>Bacterial database</term>
<term>Bacterial genomes</term>
<term>Bioinformatics</term>
<term>Biological questions</term>
<term>Carrier protein</term>
<term>Comparison code</term>
<term>Computat</term>
<term>Concurrency</term>
<term>Concurrency computat</term>
<term>Copyright</term>
<term>Database</term>
<term>Elongation factor</term>
<term>Exper</term>
<term>Faint shadows</term>
<term>Gene</term>
<term>Genes table</term>
<term>Genome</term>
<term>Genome research</term>
<term>Genome string</term>
<term>Helicase ruvb</term>
<term>Holliday junction</term>
<term>Hypothetical protein</term>
<term>Hypothetical proteins</term>
<term>John wiley sons</term>
<term>Large numbers</term>
<term>Length product</term>
<term>Metagenomic</term>
<term>Methanococcus maripaludis</term>
<term>Metric</term>
<term>Microsoft research</term>
<term>Multiple copies</term>
<term>Nding</term>
<term>Nding anchor points</term>
<term>Next query</term>
<term>Next step</term>
<term>Next version</term>
<term>Organism</term>
<term>Other enterobacteriales</term>
<term>Possible functions</term>
<term>Pract</term>
<term>Query</term>
<term>Reference organism</term>
<term>Reference organisms</term>
<term>Relatedness</term>
<term>Ribosomal operon</term>
<term>Roehm figure</term>
<term>Same database</term>
<term>Sequence data</term>
<term>Sequence string</term>
<term>Sequence strings</term>
<term>Single location</term>
<term>Taxonomic</term>
<term>Taxonomic distance</term>
<term>Taxonomy database</term>
<term>Technical report</term>
<term>Transcription termination factor</term>
<term>Transposable elements</term>
<term>Uniqueness property</term>
<term>Unrelated organisms</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">This paper describes a k‐mer approach to analysing DNA data and quickly answering certain types of ad hoc biological questions. These k‐mers (short DNA strings) are stored in a conventional relational database and indexed to support efficient exact match operations. We show that k‐mers around 20–25 bases long have interesting and useful uniqueness properties that can be used to compute a ‘relatedness’ metric and also allow k‐mers to be used as ‘unique enough’ tags to identify organisms and genes. This relatedness metric is used in SQL queries that can directly answer questions such as how two related species differ, and what genes are unique to an organism. The k‐mer tags have proven useful in applications, largely metagenomic ones that can quickly process large volumes of sequencing data to say something about what organisms and genes might be present in an environmental sample. All of this work is based on simple and fast exact matches of k‐mer strings using a database, rather than conventional alignment based on inexact matches of much longer strings. These k‐mer tools provide ways of rapidly exploring large genome spaces and handling large volumes of sequence data, and complement rather than replace existing alignment and assembly tools. Copyright © 2012 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
<region>
<li>Nouvelle-Galles du Sud</li>
</region>
<settlement>
<li>Sydney</li>
</settlement>
<orgName>
<li>Université de Sydney</li>
</orgName>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Greenfield, Paul" sort="Greenfield, Paul" uniqKey="Greenfield P" first="Paul" last="Greenfield">Paul Greenfield</name>
</noRegion>
<name sortKey="Greenfield, Paul" sort="Greenfield, Paul" uniqKey="Greenfield P" first="Paul" last="Greenfield">Paul Greenfield</name>
<name sortKey="Roehm, Uwe" sort="Roehm, Uwe" uniqKey="Roehm U" first="Uwe" last="Roehm">Uwe Roehm</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002161 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002161 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:AC68D9200A5C2B61CAD6B4DA194F23411EC22066
   |texte=   Answering biological questions by querying k‐mer databases
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021